

Clasificarea lanturilor cinematice este prezentata în Tabelul 1.1. Rangul "j" al unui element este egal cu numarul cuplelor cinematice cu care acesta se leaga de alte elemente.

		Tabelul 1.1
Dupa complexitatea miscarii	Lanturi cinematice plane	Toate elementele au miscari într-un singur plan sau în plane paralele
	Lanturi cinematice spatiale	Miscarile elementelor au loc în plane diferite
Dupa numarul cuplelor cinematice care revin unui element cinematic	Lanturi cinematice simple	Fiecare element are $j \le 2$
	Lanturi cinematice complexe	Cel putin un element are $j \ge 3$
	Lanturi cinematice închise	Toate elementele au $j \ge 2$
	Lanturi cinematice deschise	Cel putin un element are $j = 1$

m

Mecanismul spatial schematizat în figura 1.7 are: m = 3, $C_5 = 2$, $C_4 = 2$ si f = 1. Ca urmare, aplicând relatia (1.5), rezulta M = 1.

Figura 2.9

 $v_{BA} = \omega \cdot l_{AB}; \quad v_{BA} \perp AB$

Figura 2.8

 $\overline{\overline{v}}_{B} = \overline{v}_{A} + \overline{v}_{BA}$

3

А

Figura 2.10

$$\begin{split} \overline{v}_{C} &= \overline{v}_{A} + \overline{v}_{CA}, \text{ iar directia } \overline{v}_{CA} \perp AB. \end{split} \tag{2.16} \\ \frac{ab}{ac} &= \frac{AB}{AC} \tag{2.17} \\ \overline{a}_{B} &= \overline{a}_{A} + \overline{a}_{BA} \tag{2.18} \\ \overline{a}_{BA} &= \overline{a}_{BA}^{n} + \overline{a}_{BA}^{t} \tag{2.19} \\ \overline{a}_{B} &= \overline{a}_{A} + \overline{a}_{BA}^{n} + \overline{a}_{BA}^{t} \tag{2.19} \\ \overline{a}_{B} &= \overline{a}_{A} + \overline{a}_{BA}^{n} + \overline{a}_{BA}^{t} \tag{2.20} \\ a_{BA}^{n} &= \frac{v_{BA}^{2}}{l_{BA}} = \omega^{2} \cdot l_{AB}; \quad a_{BA}^{n} \parallel AB \tag{2.21} \\ a_{BA}^{t} &= \varepsilon \cdot l_{AB}; \quad a_{BA}^{t} \parallel AB \tag{2.22} \\ \overline{v}_{A} &= K_{v} \cdot \left(\overline{p_{v} a}\right) \\ v_{B} &= K_{v} \cdot \left(\overline{p_{v} b}\right) \tag{2.23} \end{split}$$

Pentru determinarea acceleratiilor se considera ecuatia vectoriala a acceleratiilor conform relatiei (2.18).

$$\frac{d\phi_1}{dt} = \omega_1; \quad \frac{d\phi_2}{dt} = \omega_2; \quad \frac{dx_B}{dt} = \upsilon_B$$

$$\begin{bmatrix} -1 & \omega_1 & \sin \phi_1 & -1 & \omega_2 & \sin \phi_2 & = \upsilon_B \end{bmatrix}$$
(2.39)

$$\begin{cases} -l_1 \cdot \omega_1 \cdot \sin \phi_1 - l_2 \cdot \omega_2 \cdot \sin \phi_2 = 0 \\ l_1 \cdot \omega_1 \cdot \cos \phi_1 + l_2 \cdot \omega_2 \cdot \cos \phi_2 = 0 \end{cases}$$
(2.40)

$$\omega_2 = -\omega_1 \cdot \frac{l_1 \cdot \cos\phi_1}{l_2 \cdot \cos\phi_2} \tag{2.41}$$

$$\begin{cases} -l_1 \cdot \omega_1 \cdot \cos\varphi_1 \cdot \frac{d\varphi_1}{dt} - l_1 \cdot \sin\varphi_1 \cdot \frac{d\omega_1}{dt} - l_2 \cdot \omega_2 \cdot \cos\varphi_2 \cdot \frac{d\varphi_2}{dt} - l_2 \cdot \sin\varphi_2 \cdot \frac{d\omega_2}{dt} = \frac{d\upsilon_B}{dt} \\ -l_1 \cdot \omega_1 \cdot \sin\varphi_1 \cdot \frac{d\varphi_1}{dt} + l_1 \cdot \cos\varphi_1 \cdot \frac{d\omega_1}{dt} - l_2 \cdot \omega_2 \cdot \sin\varphi_2 \cdot \frac{d\varphi_2}{dt} + l_2 \cdot \cos\varphi_2 \cdot \frac{d\omega_2}{dt} = 0 \end{cases}$$
(2.42)

$$\begin{cases} -l_1 \cdot \omega_1^2 \cdot \cos\phi_1 - l_2 \cdot \omega_2^2 \cdot \cos\phi_2 - l_2 \cdot \varepsilon_2 \cdot \sin\phi_2 = a_B \\ -l_1 \cdot \omega_1^2 \cdot \sin\phi_1 - l_2 \cdot \omega_2^2 \cdot \sin\phi_2 + l_2 \cdot \varepsilon_2 \cdot \cos\phi_2 = 0 \end{cases}$$
(2.43)

$$\varepsilon_2 = \frac{l_1 \cdot \omega_1^2 \cdot \sin\phi_1 + l_2 \cdot \omega_2^2 \cdot \sin\phi_2}{l_2 \cdot \cos\phi_2}$$
(2.44)

3

В

0

x_B

Figura 2.19

G

Figura 3.2

1/2

(2.45)

 $\boldsymbol{\phi}_1$

(3.1)

dx

х

0

1/2

y

 ω_1

2.

φ₂

$$J_{G} = 2 \cdot \int_{0}^{1/2} x^{2} dm$$

$$J_{G} = 2 \cdot m' \cdot \int_{0}^{1/2} x^{2} dx = 2 \cdot m \cdot \frac{m' \cdot l^{3}}{12}$$
(3.2)
(3.3)

 \vec{F}_{i2}

$$\tau_{i0} = \begin{cases} \vec{F}_i = \int_m d\vec{F}_i \\ \vec{M}_i = \int_m \vec{r} \times d\vec{F}_i \end{cases}$$
(3.4)

$$\vec{F}_{i} = \int_{m} d\vec{F}_{i} = -\int_{m} \vec{a} \cdot dm = -\int_{m} (-\omega^{2} \cdot \vec{\rho} + \vec{\epsilon} \times \vec{\rho}) \cdot dm$$
(3.5)

$$\vec{F}_{i} = \omega^{2} \cdot \int_{m}^{i} \vec{\rho} \cdot dm - \vec{\epsilon} \times \int_{m}^{i} \vec{\rho} \cdot dm$$
(3.6)

$$\vec{M}_{i} = \int_{m} \vec{r} \times d\vec{F}_{i} = \int_{m} \left[(\vec{z} + \vec{\rho}) \times \left(\omega^{2} \cdot \vec{\rho} - \vec{\epsilon} \times \vec{\rho} \right) \right] \cdot dm$$
(3.7)

$$\vec{M}_{i} = \omega^{2} \cdot \int_{m} \vec{z} \times \vec{\rho} \cdot dm - \int_{m} \vec{z} \times (\vec{\epsilon} \times \vec{\rho}) \cdot dm - \int_{m} \vec{\rho} \times (\vec{\epsilon} \times \vec{\rho}) \cdot dm$$
(3.8)

$$\vec{M}_{i} = \vec{j} \cdot \omega^{2} \cdot \int_{m} z \cdot x \cdot dm - \vec{i} \cdot \omega^{2} \int_{m} y \cdot z \cdot dm + \vec{i} \cdot \varepsilon \cdot \int_{m} z \cdot x \cdot dm + \vec{j} \cdot \varepsilon \cdot \int_{m} y \cdot z \cdot dm - \vec{k} \cdot \varepsilon \cdot \int_{m} \rho^{2} \cdot dm$$
(3.9)

(3.10)

$$M_{m.red.} \cdot d\phi = \sum F_{nk} \cdot \cos \alpha_k \cdot dl_k + \sum M_{nk} \cdot d\phi_k$$

$$M_{r.red.} \cdot d\phi = \sum F_{rk} \cdot \cos \alpha'_k \, dl'_k + \sum M_{rk} \cdot d\phi'_k$$
(3.24)
(3.25)

$$M_{m.red.} = \sum F_{mk} \cdot \frac{v_k}{\omega} \cdot \cos \alpha_k + \sum M_{mk} \cdot \frac{\omega_k}{\omega}$$
(3.26)

$$M_{m.red.} = \sum F_{rk} \cdot \frac{v'_{k}}{\omega} \cdot \cos \alpha'_{k} + \sum M_{rk} \cdot \frac{\omega'_{k}}{\omega}$$
(3.27)

$$\omega_{\rm m} = \frac{1}{\Delta \phi} \cdot \int_{\phi_{\rm l}}^{\phi_{\rm 2}} \omega \cdot d\phi \tag{4.1}$$

Se defineste gradul de neregularitate al mersului masinii (\delta) ca fiind $\delta = \frac{\delta_{max} - \delta_{min}}{\delta_m}$.Uzual, gradul de neregularitate al mersului masinii are valorile: $\delta = 1/5...1/30$ - pentru pompe; $\delta = 1/20...1/5$ – pentru concasoare; $\delta = 1/50...1/30$ – pentru masini-unelte; $\delta = 1/300...1/200$ – pentru motoare electrice de curent alternativ si $\delta \le 1/200$ pentru motoare de aviatie.

Ca urmare, rezulta relatiile:
$$\omega_{\text{max}} = \omega_{\text{m}} \cdot \left(1 + \frac{\delta}{2}\right) \omega_{\text{max}} \text{ si } \omega_{\text{min}} = \omega_{\text{m}} \cdot \left(1 - \frac{\delta}{2}\right).$$

$$W_{\text{m}} = \int_{0}^{2\pi} M_{\text{m,red}} \cdot d\phi$$

$$W_{\text{r}} = \int_{0}^{2\pi} M_{\text{r,red}} \cdot d\phi$$
(4.2)

$$J_{\text{red.max}} \cdot \frac{\omega_{\text{max}}^2}{2} - J_{\text{red.min}} \cdot \frac{\omega_{\text{min}}^2}{2} = |\Delta W_{\text{max}}|$$

Figura 4.1

$$J = \frac{G \cdot D}{8 \cdot g}$$

(4.10)

Figura 4.3

(4.4)

$$\begin{array}{c} \varphi = \arg \frac{F_{2,1}}{N_{2,1}} & (5,1) \\ p_m = \frac{N_{21}}{N_{21}} < p_n & (5,2) \\ p_m = 0, \frac{N_{21}}{\sin(\theta - 0)} & (5,2) \\ p = P_{max} = 0, \frac{\sin(\theta + 0)}{\sin(\theta - 0)} & (5,3) \\ P = P_{max} = 0, \frac{\sin(\theta - 0)}{\sin(\theta + 0)} & (5,3) \\ \begin{cases} 2, \mu > 0 \\ \mu > n = n \\ 2 \\ (ghidaj) & \mu \\ P_{max} = 1, 1 \\ P_{max} = 1,$$

$$p_{\rm m} = \frac{N/2}{b \cdot L} \le p_{\rm a} \tag{5.12}$$

$$F_{f} = \mu \cdot N = \frac{\mu}{\sin \alpha + \mu \cdot \cos \alpha} \cdot F = \mu_{c} \cdot F$$
(5.13)

$$\mu_{c} = \frac{\mu}{\sin \alpha + \mu \cos \alpha} \rangle \mu, \mu_{c} \text{ este minim pentru } \alpha = \frac{\pi}{2} - \varphi.$$
(5.14)

$$\rho = \mathbf{r}_1 \cdot \sin \phi \approx \mathbf{r}_1 \cdot \mathbf{t}_3 \ \phi = \mathbf{r}_1 \cdot \mu = \mathrm{ct.}$$

$$M_f = F_{f21} \cdot \mathbf{r}_1 = F_{21} \cdot \sin \phi \cdot \mathbf{r}_1 \approx F \cdot \mathbf{t}_3 \ \phi \cdot \mathbf{r}_1 = F \cdot \mathbf{r}_1 \cdot \mu$$
(5.16)

$$p(\alpha) = p_{max} \cdot \sqrt{1 - \left(\frac{\alpha}{\alpha_c}\right)^2}$$
(5.17)

$$\sin \alpha_{\rm c} = \sqrt{\frac{4}{\pi}} \cdot \left(\frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2} \right) \cdot \frac{2 \cdot F}{B \cdot (D - d)}$$
(5.18)

$$M_{f} = \int_{-\alpha_{c}}^{\alpha_{c}} \left[\mu \cdot p(\alpha) \cdot B \cdot \frac{D}{2} \cdot d\alpha \right] \cdot \frac{D}{2}$$
(5.19)

 $M_{f} = \mu \cdot \frac{\alpha_{c}}{\sin \alpha_{c}} \cdot F \cdot \frac{D}{2} = \mu_{ech} \cdot F \cdot r \text{), coeficientul de frecare conventional (echivalent): } \mu_{ech} = \frac{\mu \cdot \alpha_{c}}{\sin \alpha_{c}} \text{ (5.20)}$

Figura 5.6

Figura 5.7

$$F = \int_{-\pi/2}^{\pi/2} p_{m} \cdot \left(\frac{d}{2} \cdot d\alpha\right) \cdot \cos\alpha \cdot B = p_{m} \cdot B \cdot d$$
(5.21)

$$p_{\rm m} = \frac{F}{d \cdot B} \le p_{\rm a} \tag{5.22}$$

$$\mathbf{M}_{\mathrm{f}} = \int_{-\pi/2}^{\pi/2} \boldsymbol{\mu} \cdot \mathbf{p}_{\mathrm{m}} \cdot \left(\frac{\mathrm{d}}{2} \cdot \mathrm{d}\boldsymbol{\alpha}\right) \cdot \mathbf{B} \cdot \frac{\mathrm{d}}{2} = \boldsymbol{\mu} \cdot \boldsymbol{\pi} \cdot \mathbf{p}_{\mathrm{m}} \cdot \frac{\mathrm{d}^{2}}{4} \cdot \mathbf{B}$$
(5.23)

$$\mathbf{M}_{\mathrm{f}} = \frac{\pi}{2} \cdot \mathbf{\mu} \cdot \mathbf{p}_{\mathrm{m}} \cdot \mathbf{r}^{2} \cdot \mathbf{B}$$
(5.24)

$$M_{f} = \frac{\pi}{2} \cdot \mu \cdot F \cdot r \cong 1,57 \cdot \mu \cdot F_{r}$$
(5.25)
$$\pi/2$$

$$\mathbf{F} = 2 \cdot \mathbf{p}_{\max} \cdot \frac{\mathbf{d}}{2} \cdot \mathbf{B} \cdot \int_{0}^{\pi/2} \cos^2 \alpha \cdot \mathbf{d}\alpha$$
(5.26)

$$p_{\max} = \frac{2 \cdot F}{\pi \cdot B \cdot r} \le p_a$$
(5.27)

$$p_{\max} = \frac{4 \cdot F}{\pi \cdot B \cdot d} \le p_a$$
(5.28)

$$M_{f} = \frac{\mu \cdot B \cdot d^{2} \cdot p_{max}}{2}$$
(5.29)

$$M_{f} = \frac{4}{\pi} \cdot \mu \cdot F \cdot r, P = F_{f} \cdot v = \mu \cdot F \cdot v$$
(5.30)

 $(p_{m} \cdot v) \leq (p \cdot v)_{admisibil}$, respectiv $(p_{max} \cdot v) \leq (p \cdot v)_{admisibil}$

$$p_{m} = \frac{4 \cdot F}{\pi \cdot \left(D_{e}^{2} - D_{i}^{2}\right)} \le p_{a}$$
De
$$(5.31)$$

$$M_{f} = \int_{\frac{Di}{2}}^{\frac{2}{2}} (p_{m} \cdot 2\pi r \cdot dr) \cdot \mu \cdot r$$
(5.32)

$$M_{f} = \frac{1}{3} \cdot \mu \cdot F \cdot \frac{D_{e}^{3} - D_{i}^{3}}{D_{e}^{2} - D_{i}^{2}}$$
(5.33)

$$F = \int_{\frac{Di}{2}}^{\frac{De}{2}} p \cdot 2\pi r \cdot dr = 2\pi (pr) \cdot \int_{\frac{Di}{2}}^{\frac{De}{2}} dr$$
(5.34)

$$\mathbf{F} = 2 \cdot \boldsymbol{\pi} \cdot (\mathbf{p} \cdot \mathbf{r}) \cdot \frac{\mathbf{D}_{\mathbf{e}} - \mathbf{D}_{\mathbf{i}}}{2}$$
(5.35)

$$p = \frac{F}{\pi \cdot (D_e - D_i) \cdot r}, \text{ pentru } r = D_i/2, p_{max} = \frac{2 \cdot F}{\pi \cdot (D_e - D_i) \cdot D_i} \text{ si pentru } r = D_e/2 p_{min} = \frac{2 \cdot F}{\pi \cdot (D_e - D_i) \cdot D_e}$$
(5.36)

$$\mathbf{M}_{\mathbf{f}} = \int_{\frac{\mathbf{D}_{\mathbf{i}}}{2}}^{\frac{\mathbf{D}_{\mathbf{i}}}{2}} (\mathbf{p} \cdot 2\pi \mathbf{r} \cdot d\mathbf{r}) \cdot \mathbf{\mu} \cdot \mathbf{r} = 2\pi (\mathbf{p}\mathbf{r}) \cdot \mathbf{\mu} \cdot \int_{\frac{\mathbf{D}_{\mathbf{i}}}{2}}^{\frac{\mathbf{D}_{\mathbf{i}}}{2}} \mathbf{r} \cdot d\mathbf{r}$$
(5.37)

$$\mathbf{M}_{\mathrm{f}} = 2\pi\mu \cdot \left(\mathrm{pr}\right) \cdot \frac{\mathbf{D}_{\mathrm{e}}^{2} - \mathbf{D}_{\mathrm{i}}^{2}}{8} = \frac{\pi}{4} \cdot \mu \cdot \left(\mathrm{pr}\right) \cdot \left(\mathbf{D}_{\mathrm{e}}^{2} - \mathbf{D}_{\mathrm{i}}^{2}\right)$$
(5.38)

Pentru
$$(\mathbf{p} \cdot \mathbf{r}) = \frac{F}{\pi \cdot (\mathbf{D}_{e} - \mathbf{D}_{i})}$$
: $\mathbf{M}_{f} = \frac{1}{4} \cdot \mu \cdot F \cdot (\mathbf{D}_{e} + \mathbf{D}_{i})$ (5.39)
(pm · v) $\leq (\mathbf{p} \cdot \mathbf{v})$ admisibil, respectiv (pmax · v) $\leq (\mathbf{p} \cdot \mathbf{v})$ admisibil (5.40)

 $(pm \cdot v) \le (p \cdot v)$ admisibil, respectiv $(pmax \cdot v) \le (p \cdot v)$ admisibil

Pentru $\alpha = \beta \implies p_{max} = \sigma_{smax} = \frac{2 \cdot F_u \cdot e^{\mu \cdot \beta}}{B \cdot D \cdot (e^{\mu \cdot \beta} - 1)}$

$$p_{Hmax} = \sigma_{Hmax} = \frac{2 \cdot F}{\pi \cdot b_H \cdot B}$$
(5.56)

$$b_{\rm H} = \sqrt{\frac{4}{\pi} \cdot \frac{F \cdot \rho}{B} \cdot \left(\frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2}\right)} = \sqrt{\frac{8}{\pi} \cdot \frac{F \cdot \rho}{E_{\rm ech} \cdot B}}, \text{ unde } \frac{1}{\rho} = \frac{1}{\rho_1} + \frac{1}{\rho_2}$$
(5.57)

$$E_{ech} = \frac{2}{\frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2}}$$
(5.58)

$$\sigma_{\rm H\,max} = \sqrt{\frac{F \cdot E_{\rm ech}}{2 \cdot \pi \cdot \rho \cdot B}}$$
(5.59)

În cazul particular cilindru/plan, $\rho_1 = R$, $\rho_2 \rightarrow \infty$, $E_1 = E$ si, ipotetic, $E_2 \rightarrow \infty$. Ca urmare, $E_{ech} = \frac{2}{2 \cdot \frac{1 - v^2}{E}}$

$$b_{\rm H} = 1,076 \cdot \sqrt{\frac{F \cdot R}{E \cdot B}}$$

$$\sigma_{\rm H} = 0,418 \cdot \sqrt{\frac{F \cdot E}{R \cdot B}}$$
(5.60)
(5.61)

Figura 5.14

Figura 5.15

$$P_{fi} = F_{i} \cdot k \cdot \omega_{l} \cdot \left(1 + 2 \cdot \frac{d_{ei}}{2 \cdot d_{b}}\right) = F_{i} \cdot k \cdot \omega_{l} \cdot \left(1 + \frac{d_{ei}}{d_{b}}\right)$$
(5.65)

$$M_{fi} = \frac{P_{fi}}{\omega_{l}} = F_{i} \cdot k \cdot \left(1 + \frac{d_{ei}}{d_{b}}\right). \text{ Momentul de frecare total } M_{f} = \sum M_{fi} = k \cdot \left(1 + \frac{d_{ei}}{d_{b}}\right) \cdot \sum F_{i}$$
(5.66)

$$\sum F_{i} = \frac{4}{\pi} \cdot F \tag{5.67}$$

$$M_{f} = \frac{4}{\pi} \cdot \mathbf{k} \cdot \mathbf{F} \cdot \left(1 + \frac{\mathbf{d}_{ei}}{\mathbf{d}_{b}}\right)$$
(5.68)
$$M_{f} = \frac{4}{\pi} \cdot \mathbf{k} \cdot \mathbf{F} \cdot \frac{\mathbf{d}}{\mathbf{d}_{ei}} \cdot \left(1 + \frac{\mathbf{d}_{ei}}{\mathbf{d}_{b}}\right) \cdot \frac{2}{\mathbf{d}_{ei}}$$
(5.69)

$$\mu_{\rm r} = \frac{8}{\pi} \cdot \frac{\rm k}{\rm d} \cdot \left(1 + \frac{\rm d_{ei}}{\rm d_b}\right) << \mu_{\rm a}$$
(5.70)

$$M_{f} = \mu_{r} \cdot F \cdot \frac{d}{2}$$
(5.71)

$$\begin{cases} P_{\mathbf{i}} = 2F_{\mathbf{i}} \cdot \mathbf{k} \cdot \omega_{\mathbf{b}} \\ \omega_{\mathbf{b}} \cdot \mathbf{d}_{\mathbf{b}} = \omega_{\mathbf{b}} \cdot \frac{\mathbf{d}_{\mathbf{m}}}{2} \end{cases}$$
(5.72)

$$P_{\mathbf{i}} = F_{\mathbf{i}} \cdot \mathbf{k} \cdot \boldsymbol{\omega}_{\mathbf{i}} \cdot \frac{\mathbf{d}_{\mathbf{m}}}{\mathbf{d}_{\mathbf{b}}}$$

$$(5.73)$$

$$M_{f} = \frac{\sum P_{f}}{\omega_{1}} = k \cdot \frac{d_{m}}{d_{b}} \cdot \sum F_{i}$$
(5.74)

$$M_{f} = k \cdot F \cdot \frac{d_{m}}{d_{b}} = \mu_{r} \cdot F \cdot \frac{d}{2}$$

$$(5.75)$$

$$\mu_r = \frac{2 \cdot k \cdot d_m}{d \cdot d_b} \ll \mu_a \tag{5.76}$$

$$p_{\rm m} = \frac{4 \cdot \frac{F}{z}}{\pi \cdot (d^2 - D_1^2)} \le p_{\rm a}$$
(5.77)

$$H = F \cdot tg(\psi_2 + \phi'), \text{ unde } \psi_2 = \operatorname{arc} tg \frac{p}{\pi \cdot d_2}$$
(5.78)

$$M_{t1} = H \cdot \frac{d_2}{2} = F \cdot \frac{d_2}{2} \cdot tg(\psi_2 + \phi')$$
(5.79)

$$M'_{t1} = F \cdot \frac{d_2}{2} = F \cdot \frac{d_2}{2} \cdot tg(\psi_2 - \phi')$$
(5.80)

Punând conditia ca $M'_{t1} \le 0$, rezulta conditia de autofrânare $\psi_2 \le \phi'$ (5.81)

$$M_{2} = \frac{1}{3} \cdot \mu_{p} \cdot F \cdot \frac{S^{3} - D_{g}^{3}}{S^{2} - D_{g}^{2}}$$
(5.82)

$$M_{\text{cheie}} = F \cdot \frac{d_2}{2} \cdot tg(\psi_2 + \phi') + \frac{1}{3} \cdot \mu_p \cdot F \cdot \frac{S^3 - D_g^3}{S^2 - D_g^2}$$
(5.83)

Pentru o cheie de lungime L_c rezulta forta la cheie $F_{cheie} = \frac{M_{cheie}}{L_c}$.

Pentru o lungime standardizata $L_c = (12 \cdots 15) \cdot d$, rezulta $F \cong (60 \cdots 100) \cdot F_{cheie}$!

$$\eta = \frac{L_u}{L_c} = \frac{F \cdot p}{H \cdot \pi \cdot d_2} = \frac{F \cdot tg \psi_2}{F \cdot tg(\psi_2 + \phi')} = \frac{tg \psi_2}{tg(\psi_2 + \phi')}$$
(5.84)

Punând conditia $\frac{d\eta}{d\psi} = 0$ pentru randamentul maxim ? max , rezulta $\psi_{opt} = \frac{\pi}{4} - \frac{\phi'}{2} \approx 41^{\circ} \dots 42^{\circ}$.

$$\eta = \frac{\operatorname{tg} \psi_2}{\operatorname{tg} 2 \cdot \psi_2} = \frac{\operatorname{tg} \psi_2}{\frac{2 \cdot \operatorname{tg} \psi_2}{1 - \operatorname{tg}^2 \psi_2}} = \frac{1 - \operatorname{tg}^2 \psi_2}{2} \le 0,5 \ ! \tag{5.85}$$

$$\eta = \frac{M_{t1} \cdot 2 \cdot \pi}{(M_{t1} + M_2) \cdot 2 \cdot \pi} = \frac{F \cdot \frac{d_2}{2} \cdot tg \psi_2}{F \cdot \left[\frac{d_2}{2} \cdot tg (\psi_2 + \phi') + \frac{1}{3} \cdot \mu_p \cdot \frac{S^3 - D_g^3}{S^2 - D_g^2}\right]}$$
sau (5.86)

$$\eta = \frac{tg\psi_2}{tg(\psi_2 + \phi') + \frac{2}{3} \cdot \mu_p \cdot \frac{S^3 - D_g^3}{d_2 \cdot (S^2 - D_g^2)}}$$
(5.87)

Figura 5.22

$$\mathbf{M}_{t} = \mathbf{F} \cdot \frac{\mathbf{d}_{2}}{2} \cdot tg(\boldsymbol{\psi}_{2} + \boldsymbol{\phi}_{r})$$
(5.88)

Momentul este similar cu cel al cuplei surub-piulita cu alunecare, iar unghiul de frecare redus este $\phi_r = \operatorname{arc} tg \frac{2 \cdot k}{d_2 \cdot \sin \gamma}$.

În acest caz randamentul atinge valori de 80...85%, iar puterea pierduta prin frecare este de 50...100 de ori mai mica decât în cazul suruburilor cu alunecare.