

$$\begin{split} F_{I} &= 2 \cdot \left(e - \frac{d_{1}}{2} \right) \cdot s_{\min} \cdot \tau_{f}^{*)} & ^{*)} \text{ tensiune de forfecare în table} \end{split} \tag{2.3} \\ \tau_{f}^{*)} &\leq \tau_{af}^{*)} & (2.4) \\ F_{I} &= (t - d_{1}) \cdot s_{\min} \cdot \sigma_{t}^{*)} & ^{*)} \text{ tensiune de tractiune în table} & (2.4) \\ F_{I} &= 2 \cdot (e_{I} - d_{1}) \cdot s_{\min} \cdot \tau_{f}^{**)} & ^{**}) - \text{ tensiune a de forfecare longitudinala a tablelor} & (2.5) \\ F_{I} &= 2 \cdot (e_{I} - d_{1}) \cdot s_{\min} \cdot \tau_{f}^{**} & ^{**}) - \text{ tensiune a de forfecare longitudinala a tablelor} & (2.5) \\ F_{0} &= \frac{F}{i} & (2.6) \\ FL &= \sum_{x=1}^{n} i_{x} \cdot F_{x} \cdot r_{x}; & n = 2 \\ \frac{F_{I}}{r_{1}} &= \frac{F_{2}}{r_{2}}; & F_{2} = F_{\max} \\ FL &= i_{1} \cdot F_{1} \cdot r_{1} + i_{2} \cdot F_{2} \cdot r_{2} = i_{1} \cdot \frac{F_{1}}{r_{2}} \cdot F_{2} \cdot r_{1} + i_{2} \cdot F_{2} \cdot r_{2} & (2.7) \\ FL &= F_{2} \cdot (i_{1} \cdot \frac{r_{1}^{2}}{r_{2}} + i_{2} \cdot r_{2}) \Rightarrow F_{2}, \text{ respectiv } F_{I} \end{aligned}$$

$$F_{\max} = \sqrt{F_0^2 + F_2^2 + 2 \cdot F_0 \cdot F_2 \cdot \cos(F_0, F_2)}$$

$$\tau_{ee} = (0.6 \dots 0.7) \cdot \sigma_{ee}$$
(2.8)

$$\sigma_{\rm as} = (2...2,5) \cdot \tau_{\rm af}$$

(2.9)

$$\tau_{fs} = \frac{F}{2 \cdot l_{s1} \cdot a} \leq \tau_{afs}$$

$$l_{s1} = l_1 - 2 \cdot s$$

$$a = 0,7 \cdot s$$

$$F \cdot l_0 = M \Longrightarrow F = \frac{M}{l_0}$$

$$\tau_{fs} = \frac{F}{-1} \leq \tau_{afs}$$
(2.22)
(2.23)

$$I_{s1} \cdot a$$

$$I_{s1} = I_1 - 2 \cdot s$$

$$\left[F_1 = F \cdot \frac{I_2}{I_1 + I_2}\right]$$

$$\begin{cases} I_1 + I_2 - I' \\ F_1 \cdot I_1 = F_2 \cdot I_2 \end{cases} \Rightarrow \begin{cases} I_1 + I_2 \\ F_2 = F \cdot \frac{I_1}{I_1 + I_2} \end{cases}$$
(2.24)

$$l'_{1s} = \frac{F_1}{0.7 \cdot s \cdot \tau_{afs}}$$
$$l''_{1s} = \frac{F_2}{0.7 \cdot s \cdot \tau_{afs}}$$

(2.25)

$$W_{ps} = \frac{\pi \cdot \left[(D + 2 \cdot a)^4 - D^4 \right]}{16 \cdot (D + 2 \cdot a)}$$
(2.28)
$$\tau_{fs} = \frac{F}{\pi \cdot d^2} \le \tau_{afs}$$
(2.29)

$$n \cdot \frac{\pi \cdot d^2}{4} = r_{abs}$$
$$F_c = \beta_1 \cdot \beta_2 \cdot \beta_3 \cdot F;$$

 $\mathbf{M}_{c} = \boldsymbol{\beta}_{1} \cdot \boldsymbol{\beta}_{2} \cdot \boldsymbol{\beta}_{3} \cdot \mathbf{M};$

- β_1 = 1…1,3 dat de gradul de cunoastere a eforturilor;
- $\beta_2=1{\cdots}3\,$ tine cont de prezenta socurilor;

 $\beta_3 = 1, 2 \cdots 1, 5$ - coeficient de importanta a asamblarii.

$$\sigma_{as} = k_0 \cdot k_1 \cdot \sigma_a$$
;

- $\boldsymbol{\sigma}_a$ rezistenta admisibila a materialului de baza;
- k_0 coeficient de calitate;

 k_1 - coeficient care tine cont de forma sectiunii si de solicitare (Tabelul 2.1).

		Tabelul 2.1
Tipul îmbinarii	Solicitarea	k ₁
Cap la cap	- tractiune	0,75
	- compresiune	0,85 0,9
	- încovoiere	0,8
	- forfecare	0,65
De colt	Orice tip de solicitare	0,65
		Tabelul 2.2

Modul de executare	Caracteristici	Domenii de aplicare
Cu ciocanul de lipit	Ciocanul se încalzeste la o temperatura mai mare decât cea la care se topeste aliajul de lipit.	Lipituri moi (unicate, electrotehnica).
Cu flacara (lampa de mâna)	Lampa de mâna sau flacara oxiacetilenica.	Otel, cupru sau aliaje. Piese mari, serie mare.
Cu rezistente electrice (efect Joule)	Electrozi de Cu, pentru a se evita supraîncalzirile locale. Timp redus de încalzire.	Lipituri moi sau tari.
Cufundarea în baie de sare topita	Încalzirea baii se face cu electrozi de grafit. Piesele de	Cu si aliajele sale (unicate sau serie).

Modul de executare	Caracteristici	Domenii de aplicare
(baie de aliaj de lipit)	asamblat se introduc în baie în zona de lipire.	Productivitate mare.
Prin inductie	Locul de lipit este încalzit prin curent electric variabil.	Productie în flux continuu (serie mare). Pentru materiale feromagnetice.
Încalzire în cuptor	Se introduce toata piesa dupa ce, în prealabil, s-a depus materialul de adaos. În cuptor exista atmosfera protectoare de gaz.	Lipituri moi sau tari, serie mare
Cu ultrasunete	Aliajul topit difuzeaza mai usor.	Pentru Al, Cu, Ag, Mg, Ge.
Cu raze laser	Laser YAG, rubin sau CO ₂ . Proces automatizat.	Electronica
Cu flux reactiv de lipire	Fluxul contine clorura de zinc încalzita la 345÷380°C. Aceasta reactioneaza cu Al (material de baza) si depune Zn pe rost.	Aluminiu (metoda unica de lipire a aluminiului).

